Artificial neural network analysis for evaluating cancer risk in multinodular goiter
نویسندگان
چکیده
BACKGROUND The aim of this study was to create a diagnostic model using the artificial neural networks (ANNs) to predict malignancy in multinodular goiter patients with an indeterminate cytology. MATERIALS AND METHODS Out of 623 patients, 411 evaluated for multinodular goiter between July 2004 and March 2010 had a fine-needle aspiration biopsy. All patients underwent total thyroidectomy. The interpretation was consistent with an indeterminate lesion in 116 (18.6%) patients. Patient's medical records including age, sex, dominant nodule size, pre-operative serum thyroid-stimulating hormone level, thyroid hormone therapy and final pathologic diagnosis were collected retrospectively. RESULTS The mean age of the patients was 44.6 years (range, 17-78 years). About 104 (89.7%) were female and 12 (10.3%) were male patients. Final pathology revealed 24 malignant diseases (20.7%) and 92 (79.3%) benign diseases. After the completion of training, the ANN model was able to predict diagnosis of malignancy with a high degree of accuracy. The area under the curve of ANNs was 0.824. CONCLUSION The ANNs technique is a useful aid in diagnosing malignancy and may help reduce unnecessary thyroidectomies in multinodular goiter patients with an indeterminate cytology. Further studies are needed to construct the optimal diagnostic model and to apply it in the clinical practice.
منابع مشابه
Evaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques
This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملIncreased Chromosomal and Oxidative DNA Damage in Patients with Multinodular Goiter and Their Association with Cancer
Thyroid nodules are a common clinical problem worldwide. Although thyroid cancer accounts for a small percentage of thyroid nodules, the majority are benign. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) levels are a marker of oxidative stress and play a key role in the initiation and development of a range of diseases and cancer types. This study evaluates cytokinesis-block micronucleus cytome (CBMN-cy...
متن کاملForecasting the Profitability in the Firms Listed in Tehran Stock Exchange Using Data Envelopment Analysis and Artificial Neural Network
Profitability as the most important factor in decision-making, has always been considered by stakeholders in the company's profitability. Also can be a basis for evaluating the performance of the managers. The ability to predict the profitability can be very useful to help decision-makers. That's why one of the most important issues is the expected profitability. The importance of these foreca...
متن کامل